Simple Recurrent Networks and Natural Language: How Important is Starting Small?
نویسندگان
چکیده
Prediction is believed to be an important component of cognition, particularly in the processing of natural language. It has long been accepted that recurrent neural networks are best able to learn prediction tasks when trained on simple examples before incrementally proceeding to more complex sentences. Furthermore, the counter-intuitive suggestion has been made that networks and, by implication, humans may be aided during learning by limited cognitive resources (Elman, 1991 Cognition). The current work reports evidence that starting with simplified inputs is not necessary in training recurrent networks to learn pseudo-natural languages. In addition, delayed introduction of complex examples is often an impediment to learning. We suggest that special teaching methods and limited cognitive resources during development may be of no benefit for learning the structure of natural language.
منابع مشابه
Language acquisition in the absence of explicit negative evidence: how important is starting small?
It is commonly assumed that innate linguistic constraints are necessary to learn a natural language, based on the apparent lack of explicit negative evidence provided to children and on Gold's proof that, under assumptions of virtually arbitrary positive presentation, most interesting classes of languages are not learnable. However, Gold's results do not apply under the rather common assumption...
متن کاملNatural Language Processing with Small Feed-Forward Networks
We show that small and shallow feedforward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neur...
متن کاملSolving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks
Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints. In this paper, to solve this problem, we combine a discretization method and a neural network method. By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem. Then, we use...
متن کاملPii: S0010-0277(99)00031-1
It is commonly assumed that innate linguistic constraints are necessary to learn a natural language, based on the apparent lack of explicit negative evidence provided to children and on Gold’s proof that, under assumptions of virtually arbitrary positive presentation, most interesting classes of languages are not learnable. However, Gold’s results do not apply under the rather common assumption...
متن کاملIncremental Syntactic Parsing of Natural Language Corpora with Simple Synchrony Networks
ÐThis article explores the use of Simple Synchrony Networks (SSNs) for learning to parse English sentences drawn from a corpus of naturally occurring text. Parsing natural language sentences requires taking a sequence of words and outputting a hierarchical structure representing how those words fit together to form constituents. Feed-forward and Simple Recurrent Networks have had great difficul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997